Hall Ticket Number:												

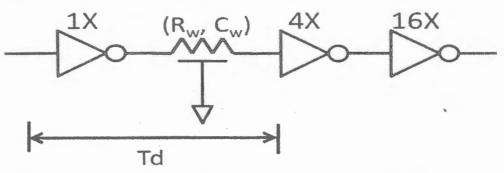
VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.E. I Year (ECE) I-Semester (Make Up) Examinations, March-2016 (Embedded Systems & VLSI Design)

Digital IC Design

Time: 3 hours

Max. Marks: 70

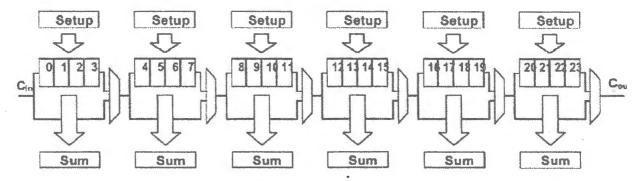
Note: Answer ALL questions in Part-A and any FIVE questions from Part-B

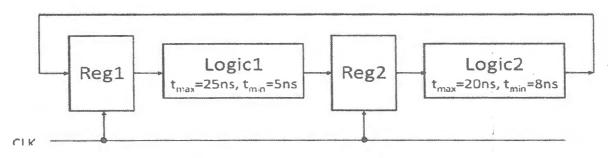

Part-A (10 X 2=20 Marks)

- 1. Define clock skew. How does it affect the performance of a VLSI system?
- 2. How does the VTC of a CMOS inverter change if the NMOS transistor is made stronger?
- 3. Compare and contrast both CMOS and pseudo-NMOS inverters. Draw their VTCs.
- 4. Estimate the intrinsic time constant of a balanced CMOS inverter.
- 5. Distinguish between a latch and a register with the help of a timing diagram.
- 6. Give the Elmore delay model for a 1 mm long interconnect split into 10 sections.
- 7. How does pipelining reduce power consumption in VLSI systems?
- 8. Draw a level restorer circuit and explain its working.
- 9. Why is a pre-decoder necessary for decoding Row address in SRAM structures?
- 10. Compare a 1T DRAM cell with a 6T SRAM cell with the help of circuit diagrams.

Part-B $(5 \times 10 = 50 \text{ Marks})$

(All bits carry equal marks)


- 11. a) Compute the propagation delay, t_{pd} of a CMOS inverter in 0.25 μ technology. Plot the t_{pd} as a function of β and interpret the effect of sizing on propagation delay.
 - b) Design a pseudo-NMOS inverter for $V_{OL} = 0.2V$ and $t_{pHL} \le 100$ ps. Assume $C_L = 50$ fF.
- 12. a) Implement XOR/XNOR functions using CMOS and CPL gates and compare their performance.
 - b) An FO4 inverter chain is shown below. The first and second stages are connected by a 100 μ x 0.25 μ long poly wire. Calculate the T_{dLH} and T_{dHL} using 0.25 μ technology parameters. Assume R_W = 150 Ω/\Box , C_W = 0.1 fF/ μ^2 , R_{NMOS} = 10K and R_{PMOS} = 12K for a unit size inverter.


- 13. a) Give the schematic of a CMOS Dual Edge Triggered (DET) Register and show that its throughput is twice that of an edge triggered register. What is the trade off?
 - b) What are the challenges in distributing power and clock in a VLSI system? Give two clock distribution techniques followed in VLSI system design.

Contd...2

- 14. a) Explain the working principle of a 4 bit Manchester Carry chain adder and find its critical path delay. What are its limitations? How do you overcome them?
 - b) A 24 bit, 6 stage Carry Bypass adder with $t_{setup} = 4ns$, $t_{carry} = 1ns$, $t_{sum} = 4ns$ and $t_{bypass} = 2ns$ is given below. Identify the critical path and list the delays for each block along the critical path. Find the total delay assuming each stage bypasses the same number of bits.

- 15. a) Draw the circuit of a 3T DRAM cell and explain its Read/ write operations with the help of timing diagrams.
 - b) What is Memory Yield? What are the challenges and techniques in DSM regime for improving Memory Yield?
- 16. a) Show that for a balanced CMOS inverter $NM_L = NM_H$ and $t_{pHL} = t_{pLH}$.
 - b) A pipelined system is shown below. Estimate the maximum frequency of operation of the system if there is no skew. Given t_{CLK-Qmax} = 4 ns, t_{CLK-Qmin} = 2 ns and t_{setup} = t_{hold} = 1 ns, also estimate the maximum clock skew that the system can tolerate.

- 17. Write short notes on any two of the following:
 - a) CMOS Schmitt Trigger
 - b) Sense Amplifier Latch for SRAMs
 - c) Power Management in VLSI Systems